

MATH506

Mathematical Methods 1 Calculus and Linear Systems

1

MATH506

Mathematical Methods 1 Calculus and Linear Systems

Instructor Contact Details

Lecturer-in-charge: Zhigang CAO Email: wlwyxy_29@zju.edu.cn Office location: Huajiachi Campus, Zhejiang University, Hangzhou, China Consultation Time: Book appointment by sending email to: wlwyxy_29@zju.edu.cn

Teaching Times. Modes and Locations

Course Duration: 21 Dec 2025 to 09 Jan 2026 Modes: Face-to-face Location: Huajiachi Campus, Zhejiang University via face-to-face

Academic Level

Undergraduate

Credit Points:

The course is worth 6 units of credit point.

<u>Credit Hours</u>

The number of credit hours of this course equals to the credits of a standard semester-long course.

Contact Hours

The course contains a total of 53 contact hours, which consists of orientation, lectures, seminars, quiz, discussion, research, case study, small tests, assignments, on-site field trip(s), in-class and after-class activities, revision, self-study, and final exam. Students will receive an official transcript which is issued by Zhejiang University when completing this course.

Enrolment Requirements

Eligibility requires enrollment in an overseas university as an undergraduate or postgraduate student, proficiency in English, and pre-approval from the student's home institution.

2

Course Description:

This unit provides a rigorous and practical introduction to university-level mathematics, laying the foundation for further study in science, engineering, economics, and data science. It covers three core areas: calculus of one variable, linear algebra, and complex numbers. Students will explore the concepts of limits, derivatives, integrals, and their real-world applications, while also developing skills in solving systems of equations using vectors, matrices, determinants, and eigenvalues. Complex numbers are introduced as an essential tool in modern mathematical modeling. The unit emphasizes both conceptual understanding and problem-solving techniques, equipping students with mathematical tools essential for academic success and interdisciplinary applications.

<u>Prerequisite:</u>

N/A

Learning Resources

• Stewart, J. (2015). Calculus: Early Transcendentals (8th ed.). Cengage Learning. ISBN: 9781285741550.

Learning Objectives

By the end of this course, you should be able to:

- Demonstrate mathematical reasoning and communication skills by applying logical thinking and clearly articulating mathematical ideas in written form.
- Achieve fluency in core mathematical techniques, including manipulation of vectors, matrices, complex numbers, and real-valued functions; and apply concepts such as limits, continuity, differentiation, and integration to solve mathematical problems.
- Apply foundational knowledge of calculus and linear algebra to real-world contexts and interdisciplinary applications, using appropriate methods to model, analyze, and solve problems.

Course Delivery:

• Face-to-face Lecture mode includes lectures, seminars, quiz, discussion, research, case study, small tests, assignments, on-site field trip(s), in-class and after-class activities, revision, and final exam.

The following course will be taught in English. There will also be guest speakers and

3

optional field trips available for students who would like to enhance their learning experience. All courses and other sessions will be run during weekdays.

Topics and Course Schedule:

WK	Торіс	Activities
1	Introduction	Lecture; Tutorial
1	Introduction to sets, number systems, and the complex plane; algebra of complex numbers	Lecture; Tutorial
1	Functions and graphs; inverse and composite functions; polar form of complex numbers	Lecture; Tutorial
1	Limits and continuity; introduction to vectors in two and three dimensions	Lecture; Tutorial
1	Differentiation rules; geometric interpretation of the derivative; dot product and vector projection	Lecture; Tutorial
1	Chain rule and higher-order derivatives; cross product and applications in geometry	Lecture; Tutorial
2	Optimization problems; critical points and concavity; equations of lines and planes in space	Lecture; Tutorial
2	In-class Test	Closed book
2	Related rates and implicit differentiation; solving systems of linear equations using Gaussian elimination	Lecture; Tutorial
2	Taylor polynomials and approximations; matrix operations and properties	Lecture; Tutorial
2	Definite integrals and the Fundamental Theorem of Calculus; inverse of a matrix and its applications	Lecture; Tutorial
3	Techniques of integration (substitution, by parts); determinants and Cramer's Rule	Lecture; Tutorial
3	Applications of integration (area, volume); eigenvalues and eigenvectors	Lecture; Tutorial
3	Improper integrals; diagonalization of matrices and spectral theorem (introductory)	Lecture; Tutorial
3	Review of calculus and linear algebra applications in science and engineering; exam preparation	Lecture; Tutorial
3	Revision	Tutorial
	Final exam	Closed book

<u>Assessments:</u>

Class participation	15%
In-class Test	15%
Assignments	20%
Final exam	50%

Grade Descriptors:

HD	High Distinction	85-100
D	Distinction	75-84
Cr	Credit	65-74
Р	Pass	50-64
F	Fail	0-49

High Distinction 85-100

- Treatment of material evidences an advanced synthesis of ideas Demonstration of initiative, complex understanding, and analysis.
- Work is well-written and stylistically sophisticated, including appropriate referencing, clarity, and some creativity where appropriate.
- All criteria addressed to a high level.

Distinction 75-84

• Treatment of material evidences an advanced understanding of ideas Demonstration of initiative, complex understanding and analysis Work is well-written and stylistically strong.

• All criteria addressed strongly.

Credit 65-74

- Treatment of material displays a good understanding of ideas
- Work is well-written and stylistically sound, with a minimum of syntactical errors.
- All criteria addressed clearly.

Pass 50-64

- Treatment of material indicates a satisfactory understanding of ideas Work is adequately written, with some syntactical errors.
- Most criteria addressed adequately.

Fail 0-49

- Treatment of ideas indicates an inadequate understanding of ideas Written style inappropriate to task, major problems with expression.
- Most criteria not clearly or adequately addressed.
 Zhejiang University Global Program 5 Mathemati
 - Mathematical Methods 1 Calculus and Linear Systems

<u>Academic Integrity</u>

Students are expected to uphold the university's academic honesty principles which are an integral part of the university's core values and principles. If a student fails to observe the acceptable standards of academic honesty, they could attract penalties and even disqualification from the course in more serious circumstances. Students are responsible for knowing and observing accepted principles of research, writing and any other task which they are required to complete.

Academic dishonesty or cheating includes acts of plagiarism, misrepresentation, fabrication, failure to reference materials used properly and forgery. These may include, but are not limited to: claiming the work of others as your own, deliberately applying false and inaccurate information, copying the work of others in part or whole, allowing others in the course to copy your work in part or whole, failing to appropriately acknowledge the work of other scholars/authors through acceptable referencing standards, purchasing papers or writing papers for other students and submitting the same paper twice for the same subject.

This Academic Integrity policy applies to all students of the Zhejiang University in all programs of study, including non-graduating students. It is to reinforce the University's commitment to maintain integrity and honesty in all academic activities of the University community.

<u>Policy</u>

The foundation of good academic work is honesty. Maintaining academic integrity upholds the standards of the University. The responsibility for maintaining integrity in all the activities of the academic community lies with the students as well as the faculty and the University. Everyone in this community must work together to ensure that the values of truth, trust and justice are upheld.

Academic dishonesty affects the University's reputation and devalues the degrees offered. The University will impose serious penalties on students who are found to have violated this policy. The following penalties may be imposed:

- ✓ Expulsion
- ✓ Suspension
- ✓ Zero mark /fail grade
- Marking down
- ✓ Re-doing/re-submitting of assignments or reports, and
- ✓ Verbal or written warni**ng**.